

Creating Optimal Habitats

Creating Optimal Habitats

Wastewater Science Alkalinity and pH

Wastewater Science DO and ORP

What does ORP tell us about our process?

Biological Nitrogen Removal: Convert liquid to gas ...

Ammonia Removal

Nitrification Habitat:
High DO / +ORP
Low BOD
High MLSS/MCRT
High HRT

Consumes oxygen Consumes alkalinity: lowers pH

Nitrification: Ammonia (NH_4) is converted to Nitrate (NO_3)

Oxygen Rich Habitat

MLSS* of 2500+ mg/L (High Sludge Age / MCRT / low F:M) ORP* of +100 to +150 mV (High DO)
Time* (high HRT ... 24 hr, 12 hr, 6 hr, 4 hr)
Low BOD

Consumes Oxygen Adds acid - Consumes 7 mg/L alkalinity per mg/L of $NH_4 \rightarrow NO_3$

*Approximate, each facility is different.

Biological Nitrogen Removal: Next, The Nitrate (NO_3) created during Nitrification ... is converted to Nitrogen Gas (N_2)

Nitrate Removal

Denitrification Habitat:

Low DO / -ORP High BOD

Adds DO

Gives back ½ the alkalinity: beneficially raises pH

Denitrification: Nitrate (NO_3) is converted to Nitrogen Gas (N_2)

Oxygen Poor Habitat

ORP* of -100 mV or less (D0 < 0.3 mg/L) Surplus BOD* (100-250 mg/L: 5-10 times as much as NO_3) Retention Time* of 45-90 minutes

Gives back Oxygen Gives back Alkalinity (3.5 mg/L per mg/L of $NO_3 \rightarrow N_2$)

*Approximate, each facility is different.

Nitrogen Terms for Operators

organic-Nitrogen (org-N or N_{org})

Ammonia (NH₃) Ammonium (NH₄ or NH₄⁺)

TKN (Total Kjeldahl Nitrogen) = organic-Nitrogen + Ammonia

Nitrate $(NO_3 \text{ or } NO_3^-)$

Nitrite $(NO_2 \text{ or } NO_2^-)$

total Nitrogen (total-N, N, TN, tN, or N_{total}) = TKN + Nitrate + Nitrite

Technology!

Post-Anoxic Denitrification

MLE (Modified Ludzack-Ettinger) Process

MLE Process Control:

Proper Internal Recycle Rate; not too much / not too little. ORP of +100 mV in Aerobic Zone for Ammonia (NH_4) Removal. ORP of -75 to -150 mV in Anoxic Zone for Nitrate (NO_3) Removal. Enough BOD to support Nitrate (NO_3) Removal.

MLE with not enough Internal Recycle

Ammonia (NH₄) Removal

Excellent Aerobic Habitat: ORP +150 mV $NH_4 < 0.5 \text{ mg/L}$

Nitrate (NO₃) Removal

Great Anoxic Habitat: ORP -150 mV or lower

 $NO_3 > 4$ mg/L because too little NO_3 is returned to Anoxic Zone

MLE with too much Internal Recycle

Ammonia (NH₄) Removal

Good Aerobic Habitat: ORP +100 mV NH₄ < 0.5 mg/L

Nitrate (NO₃) Removal

Stressed Anoxic Habitat: ORP 0 to -100 mV

 $NO_3 > 4 \text{ mg/L}$: bacteria will not convert Ammonia (NH_4) to Nitrate (NO_3)

MLE with way too much Internal Recycle

Ammonia (NH₄) Removal

Poor Aerobic Habitat: ORP +50 mV $NH_4 > 0.5 \text{ mg/L}$

Nitrate (NO₃) Removal

Poor Anoxic Habitat: ORP 0 mV or higher $NO_3 > 4$ mg/L

Sequencing Batch Reactor (SBR) Ammonia (NH₄) Removal: Nitrification

Sequencing Batch Reactor (SBR) Nitrate (NO₃) Removal: Denitrification

Sequencing Batch Reactor (SBR) Settle, Decant & Waste Sludge

Optimizing SBR cycle time

Too short

Will not reach +100 mV for Ammonia (NH₄) Removal.

Will not reach -100 mV for Nitrate (NO₃) Removal.

Note: Temperature and BOD affect Air OFF cycle.

Too long

Wastewater will pass through tank before all Ammonia (NH_4) converted to Nitrate (NO_3).

And, before all Nitrate (NO_3) is converted to Nitrogen Gas (N_2).

<u>Just right</u>

Good habitats ...

ORP of +100 mV for 60 minutes

And, ORP of -100 mV for 30 minutes.

Bonus: Changing conditions will serve as a selector.

Oxidation Ditch – 4-Stage Bardenpho

Anoxic Zone

Target: $NH_4 < 0.5 \text{ mg/L}$

Aerobic Zone Anoxic Zone

Aerobic Zone

Target: NO₃ of 1-4 mg/L

Secondary Clarifier

BACKGROUND

Experimenting with YOUR plant: Finding the "Right" Process Control Strategy

... and, Optimizing Nitrogen Removal

Optimize Ammonia (NH₄) Removal

Conventional Activated Sludge Plant

Ammonia (NH₄) Removal

Target: less than 0.5 mg/L

Raise mixed liquor

... the higher the better for N-Removal.

Keep ORP at +100 mV (or higher) by adjusting DO settings until ...

... enough DO & ORP to reduce NH₄ to 0.5 mg/L ...

... but not so much as to move too much DO into Anoxic or waste electricity.

Warning: pH and Nitrite (NO₂)

Step 2: Optimize Nitrate (NO₃) Removal

Operate Aeration Tank as SBR

Conventional Activated Sludge operated as SBR

Maintain Ammonia (NH₄) Removal

Target: $NH_4 < 0.5 \text{ mg/L}$

ORP: +100 mV long enough

(60 minutes)

Cycle air ON to remove NH₄ & OFF to remove NO₃ Use ORP to adjust AirON/AirOFF times

Nitrate (NO₃) Removal

Target: $NO_3 < 4 \text{ mg/L}$

ORP: -100 mV long enough (30

minutes)

If habitats are good and NO₃ remains high, likely not enough BOD.

Search for additional BOD.

Operate Aeration Tank as MLE

Aeration Tank

Secondary Clarifier

Target: $NH_4 < 0.5 \text{ mg/L}$

ORP: +100 mV

Target: $NO_3 < 4 \text{ mg/L}$

ORP: -100 mV

Unless RAS can be increased to 200% or more, NO₃ target of 4 mg/L will be hard to achieve

Sludge **Holding Tank**

MLE Process Modification of Conventional AS Plant

MLE Process Modification of Conventional AS Plant

MLE Process Modification of Conventional AS Plant

MLE & SBR Modification of Conventional AS Plant

Monitor and Control the Process

Review and Analyze Data every day

Maintain Optimized Habitats

Monitor Treatment Efficiency

Be Prepared to make Process Changes every day
Preemptive changes to keep Habitats Ideal
Reactive changes to meet Treatment Requirements

Monitoring Nitrogen

Monitoring **HABITAT CONDITIONS**

Daily testing of ...

Process control parameters

SVI

MLSS

DO

ORP

Alkalinity

DO and ORP

Probes

Portable Analyzers

pH and Alkalinity

Monitoring TREATMENT

Monitoring Nitrogen

Ammonia Nitrate

Lab Spectrophotometer

Daily testing of ...
Ammonia

Nitrate

Nitrite

In-Line Nitrogen Probes

Making clean water affordable

